A particle is moving with constant speed $\sqrt 2\,m/s$ on a circular path of radius $10\,cm$. Find the magnitude of average velocity when it has covered ${\left( {\frac{3}{4}} \right)^{th}}$ circular path
$\frac{\pi }{3}\,m/s$
$\frac{3}{{2\pi }}\,m/s$
$\frac{3}{{\pi }}\,m/s$
$\frac{4}{{3\pi }}\,m/s$
A car is moving at a speed of $40 \,m / s$ on a circular track of radius $400 \,m$. This speed is increasing at the rate of $3 \,m / s ^2$. The acceleration of car is ....... $m / s ^2$
A wheel is rotating at $900\, r.p.m.$ about its axis. When the power is cut-off, it comes to rest in $1\,minute$ . The angular retardation in $radian/s^2$ is:-
The ratio of period of oscillation of the conical pendulum to that of the simple pendulum is : (Assume the strings are of the same length in the two cases and $\theta$ is the angle made by the string with the verticla in case of conical pendulum)
In the given figure, $a = 15 \,m s^{- 2}$ represents the total acceleration of a particle moving in the clockwise direction in a circle of radius $R = 2.5\, m$ at a given instant of time. The speed of the particle is ........ $m/s$
Two particles $A$ and $B$ are moving in uniform circular motion in concentric cirdes of radius $r_{A}$ and $r_{B}$ with speed $v_A$ and $v_B$ respectively. The time period of rotation is the same. The ratio of angular speed of $A$ to that of $B$ will be